2024 Consumer Confidence Report for Public Water System RICE WSC

This is your water quality report for January 1 to December 31, 2024

RICE WSC provides surface water from Navarro Milles Lake in Navarro County and Lake Halbert in Navarro County, and Lake Bardwell Lake in Ellis County. For more information regarding this report contact:

Name Ada Garza

Phone	903-326-5551		

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (903) 326-5551

Definitions and Abbreviations

Definitions and Abbreviations	The following tables contain scientific terms and measures, some of which may require explanation.
Action Level:	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Avg:	Regulatory compliance with some MCLs are based on running annual average of monthly samples.
Level 1 Assessment:	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment:	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level or MCL:	The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
Maximum Contaminant Level Goal or MCLG:	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
Maximum residual disinfectant level or MRDL:	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum residual disinfectant level goal or MRDL G:	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MFL	million fibers per liter (a measure of asbestos)
mrem:	millirems per year (a measure of radiation absorbed by the body)
na:	not applicable.
NTU	nephelometric turbidity units (a measure of turbidity)
pCi/L	picocuries per liter (a measure of radioactivity)

Definitions and Abbreviations

ppb:	micrograms per liter or parts per billion
ppm:	milligrams per liter or parts per million
ppq	parts per quadrillion, or picograms per liter (pg/L)
ppt	parts per trillion, or nanograms per liter (ng/L)
Treatment Technique or TT:	A required process intended to reduce the level of a contaminant in drinking water.

Information about your Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water.

Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone

organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimiz exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Water Loss reported to the Texas Water Development Board was approximately 6.6% 21,680,940 gallons of water.

We completed the Initial service line inventory of the system as required by the Lead and Copper Rule Revision and no lead

was found.

Information about Source Water

RICE WSC purchases water from CITY OF ENNIS. CITY OF ENNIS provides purchase surface water from Bardwell Lake located in Ellis County. Attached is the table containing any contaminant that was detected in the provider swater for this calendar year, unless that contaminant has been separately monitored in your water system (i.e. TTHM, HAA5, Lead and Copper, Coliforms)].

RICE WSC purchases water from CITY OF CORSICANA. CITY OF CORSICANA provides purchase surface water from Lake Halbert and Navarro Milles Lake located in Navarro County. Attached is the table containing any contaminant that was detected in the provider swater for this calendar year, unless that contaminant has been separately monitored in your

water system (i.e. TTHM, HAA5, Lead and Copper, Coliforms)].

TCEQ completed a Source Water Susceptibility for all drinking water systems that own their sources. This report describes the susceptibility and types of constituents that may come into contact with the dr inking water source based on human activities and natural conditions. The system(s) from which we purchase our water received the assessment report. For more information on source water assessment s and protection efforts at our system contact **Ada Garza 903-326-5551**.

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2024	1.3	1.3	0.717	0	ppm	Ν	Erosion of natural deposits; Leaching from wo od preservatives; Corrosion of household plu mbing systems.

2024 Water Quality Test Results

Disinfection By-Products	Collection Date	Highest Level Dete cted	Range of Individua I Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)	2024	36	1.1 - 56.8	No goal for the to tal	60 60	ppb	Ν	By-product of drinking water disinfection.

*The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year

HM) tal

*The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year

Inorganic Contaminants	Collection Date	Highest Level Dete cted	Range of Individua I Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Nitrate [measured as Nitrog en]	2024	2	2.31 - 2.32	10	10	ppm	Ν	Runoff from fertilizer use; Leaching from septic ta nks, sewage; Erosion of natural deposits.

Disinfectant Residual

A blank disinfectant residual table has been added to the CCR template, you will need to add data to the fields. Your data can be taken off the Disinfectant Level Quarterly Operating Reports (D LQOR).

Disinfectant Residual	Year	Average Level	Range of Levels D etected	MRDL	MRDLG	Unit of Measu re	Violation (Y/N)	Source in Drinking Water
Chlorine	2024	2.21	.64 – 3.2	4	4	ppm	YES	Water additive used to control microbes.

Violations

Chlorine						
Some people who use water containing chlorine well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the M RDL could experience irritating effects to their eyes and nose.						
Violation Type DLQR	Violation Begin 9/18/2024	Violation End 09/29/2025	Violation Explanation we failed to file this form on time, but we did sample the water daily. Public notice received 9/30/2024			
Violationa						

Violations

Disinfectant Level Quarterly Operating Repor	04/01/2024	06/30/2024	We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be s
t (DLQOR).			ure of the quality of our drinking water during the period indicated.

Average Chlorine Residual					
2024					
Month	Average Residual (mg/L)				
January	2.64				
February	2.46				
March	2.48				
April	2.43				
May	2.26				
June	2.04				
July	1.99				
August	2.10				
September	2.25				
October	2.27				
November	2.20				
December	2.27				
2024 Yearly Average	2.28 mg/L				
	2.20				

Min reading	0.6 mg/L
Max Reading	3.8 mg/L

Average Chlorine Residual

Detected Regulated Contaminates for 2024

EP2 Lake Halbert					
SOC Pesticide	Detected Quantity	MCL	Date Collected	Analytical Method	
Atrazine	<0.1 ug/L	3 ug/L	1/31/2024	E525.2 GC/MS	
Metolachlor	<0.1 ug/L	N/A	1/31/2024	E525.2 GC/MS	
VOC's	Detected Quantity	MC/L	Date Collected	Analytical Method	
Acetone	<5.00 ug/L	N/A	8/12/2024	E524.2 GC/MS	
Cholroform	25.5 ug/L	N/A	8/12/2024	E524.2 GC/MS	
Bromodichloromethane	16.2 ug/L	N/A	8/12/2024	E524.2 GC/MS	
Dibromochloromethane	4.82 ug/L	N/A	8/12/2024	E524.2 GC/MS	
Inorganics					
Chloride	19.1 mg/L	300.0 mg/L	1/31/2024	E300.0 Anions	
Fluoride	0.481 mg/L	4.0 mg/L	1/31/2024	E300.0 Anions	
Nitrate (as N)	0.200 mg/L	10.0 mg/L	1/31/2024	E300.0 Anions	
Sulfate	95.6 mg/L	300.0 mg/L	1/31/2024	E300.0 Anions	
Total Dissolved Solids	250 mg/L	1000.0 mg/L	1/31/2024	SM2540C	
Inorganics					
Metals Trace Elements					
Calcium Total	44.9 mg/L	N/A	1/31/2024	E200.7 Metals, Trace	
Potassium Total	5.36 mg/L	N/A	1/31/2024	E200.7 Metals, Trace	
Magnesium Total	7.00 mg/L	N/A	1/31/2024	E200.7 Metals, Trace	
Sodium Total	29.9 mg/L	N/A	1/31/2024	E200.7 Metals, Trace	
E200.8 ICP-MS					
Aluminum Total	0.035 mg/L	0.2 mg/L	1/31/2024	E200.8 IC-MS	
Barium Total	0.057 mg/L	2.0 mg/L	1/31/2024	E200.8 IC-MS	
Chromium Total	<0.00100 mg/L	0.10 mg/L	1/31/2024	E200.8 IC-MS	
Copper Total	0.0013 mg/L	1.0 mg/L	1/31/2024	E200.8 IC-MS	
Manganese Total	0.0025 mg/L	0.05 mg/L	1/31/2024	E200.8 IC-MS	
Nickel Total	<0.00100 mg/L	0.1 mg/L	1/31/2024	E200.8 IC-MS	

DEFINITIONS

Only contaminants at datastable loval reported								
mg/l	parts per million or milligrams per liter							
ug/l	parts per billion or micrograms per liter							

Only contaminants at detectable level reported

Detected Regulated Contaminates for 2024

2 1 Navarro Mills					
SOC Pesticide	Detected Quantity	MCL	Date Collected	Analytical Method	
Atrazine	0.3 ug/L	3 ug/L	1/31/2024	E525.2 GC/MS	
Metolachlor	<0.1 ug/L	N/A	1/31/2024	E525.2 GC/MS	
VOC's					
Acetone	<5.00 ug/L	N/A	8/12/2024	E524.2 GC/MS	
Cholroform	40.6 ug/L	N/A	8/12/2024	E524.2 GC/MS	
Bromodichloromethane	17.3 ug/L	N/A	8/12/2024	E524.2 GC/MS	
Dibromochloromethane	4.10 ug/L	N/A	8/12/2024	E524.2 GC/MS	
Inorganics					
Chloride	14.4 mg/L	300.0 mg/l	1/31/2024	E300.0 Anions	
Fluoride	0.496 mg/L	4.0 mg/l	1/31/2024	E300.0 Anions	
Nitrate (as N)	1.38 mg/L	10.0 mg/l	1/31/2024	E300.0 Anions	
Sulfate	54.4 mg/L	300.0 mg/l	1/31/2024	E300.0 Anions	
Total Dissolved Solids	202 mg/L	1000.0 mg/l	1/31/2024	SM2540C	
Inorganics					
Metals Trace Elements					
Calcium	42.4 mg/L	N/A	1/31/2024	E200.7 Metals, Trac	
Magnesium	3.16 mg/L	N/A	1/31/2024	E200.7 Metals, Trad	
Potassium	4.68 mg/L	N/A	1/31/2024	E200.7 Metals, Trad	
Sodium Total	24.0 mg/L	N/A	1/31/2024	E200.7 Metals, Trac	
E200.8 ICP-MS					
Aluminum Total	0.028 mg/L	0.2 mg/l	1/31/2024	E200.8 IC-MS	
Barium Total	0.044 mg/L	2.0 mg/l	1/31/2024	E200.8 IC-MS	
Chromium	<0.00100 mg/L	0.10 mg/l AL	1/31/2024	E200.8 IC-MS	
Copper Total	0.0036 mg/L	1.0 mg/l AL	1/31/2024	E200.8 IC-MS	
Manganese Total	0.0035 mg/L	0.05 mg/l	1/31/2024	E200.8 IC-MS	
Nickel Total	0.0012 mg/L	.1 mg/l	1/31/2024	E200.8 IC-MS	

DEFINITIONS

ug/l	parts per billion or micrograms per liter	_
mg/l	parts per million or milligrams per liter	_

						Turbio	lity and TOC	2024							
			Navar	ro Mills							Lake	Halbert			
		NTU				тос				NTU				тос	
Month	Average	Highest	% Compliance	Raw TOC	Tap TOC	% Removal	% Compliance	Month	Average	Highest	% Compliance	Raw TOC	Tap TOC	% Removal	% Compliance
Jan	0.09	0.17	100	5.19	3.75	27.7	148	Jan	0.07	0.14	100	6.21	4.56	26.6	100
Feb	0.10	0.20	100	5.62	3.82	32.0	171	Feb	0.05	0.11	100	5.84	4.34	25.7	100
Mar	0.08	0.15	100	5.63	4.01	28.8	115	Mar	0.05	0.09	100	5.10	3.69	27.6	100
Apr	0.07	0.11	100	5.20	3.45	33.7	135	Apr	0.05	0.12	100	5.01	3.45	31.1	100
May	0.08	0.17	100	4.68	3.09	34.0	136	May	0.05	0.10	100	4.22	2.91	31.0	129
Jun	0.08	0.20	100	5.67	3.43	39.5	158	Jun	0.05	0.10	100	4.74	3.19	32.7	136
Jul	0.07	0.14	100	5.30	3.41	35.7	143	Jul	0.05	0.08	100	5.34	3.40	36.3	104
Aug	0.06	0.11	100	4.81	3.28	31.8	127	Aug	0.05	0.11	100	4.94	3.17	35.8	102
Sep	0.06	0.11	100	4.56	3.37	26.1	104	Sep	0.04	0.08	100	4.57	2.86	37.4	107
Oct	0.06	0.10	100	4.29	2.92	31.9	91	Oct	0.08	0.14	100	5.61	3.80	32.3	100
Nov	0.05	0.08	100	4.71	3.37	28.5	104	Nov	0.08	0.14	100	6.54	4.11	37.2	106
Dec	0.06	0.11	100	5.10	3.48	31.8	116	Dec	0.10	0.18	100	7.25	4.72	34.9	100
Average	0.07			5.06	3.45	31.8	129.0		0.06			5.45	3.68	32.4	107.0
			NTU	Raw TOC	Tap TOC	% Removal		TOC % cor	npliance is b	ased on co	mpliance with the	TCFO rules	s on TOC		
A	/erage Both	Plants	0.07	5.26	3.57	32.1					ceed 100% compl				
	0							-	arterly ave						

TTHM's 2024

Date of Samples	1/31/2024	4/8/2024	8/12/2024		
Address of Sample	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Average of Quarters
4501 E HWY 31	39.1	40.7	60.8	38.9	44.9
2117 W 15th Ave	40.9	48.5	80.8	51.7	55.5
3500 Northpark	41.6	46.3	79.4	41.3	52.2
700 E 16th Ave	40.0	46.6	72.5	47.4	51.6
Average for each quarter	40.4	45.5	73.4	44.8	51.0

Haa5's 2024

Date of Samples	1/31/2024	4/8/2024	8/12/2024		
Address of Sample	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Average of Quarters
4501 E HWY 31	17.2	18.0	28.5	20.9	21.2
2117 W 15th Ave	15.5	23.3	36.1	16.4	22.8
3500 Northpark	16.9	22.3	43.3	24.5	26.8
700 E 16th Ave	14.0	21.5	44.0	6.90	21.6
Average for each quarter	15.9	21.3	38.0	17.18	23.1

Regulated Substances

Year	Substance	Units	Average	Minimum	Maximum	MCL	MCLG	Possible Source
2024	Barium	ppm	0.061	0.061	0.061	2.0	2.0	Erosion of natural deposits, discharge from drilling and metal refineries
2024	Atrazine	ppm	0.0001	0.0001	0.0001	3.0	3.0	Runoff from herbicide used on row crops
2024	Cyanide	ppm	0.0227	0.0027	0.0027	0.2	0.2	Discharge from steel/metal factories; plastic factories and runoff from fertilizer
2024	Arsenic	ppm	0.001	0.001	0.001	0.010	0	Natural deposits in the earth or from industrial and agricultural pollution
2024	Fluoride	ppm	0.254	0.254	0.254	4	4	Erosion of natural deposits, water additive which promotes strong teeth, discharge from fertilizer and aluminum factories
2024	Nitrate (measured as Nitrogen) *1	ppm	0.103	0.103	0.103	10	10	Runoff from fertilizer, septic tanks, sewage, natural deposits
2024	Chloramines *3	ppm	3.17	2.90	3.51	MRDL=4	MRDLG=4	Disinfectant used to control microbes
2024	Total Haloacetic Acids (HAA5) *4	ppb	21.69	14.0	27.0	60	No goal for the total	Byproduct of drinking water disinfection
2024	Total Trihalomethanes (TTHM) *4	ppb	42.47	32.80	51.0	80	No goal for the total	Byproduct of drinking water disinfection

Total Organic Carbon (TOC) *5

2024	Source Water	ppm	4.79	4.43	5.44		Naturally present in the environment
2024	Drinking Water	ppm	3.02	2.51	3.41		Naturally present in the environment
2024	Removal Ratio	%	1.28	1.00	1.85	%Removal*	NA

Turbidity *6

Year	Substance	Units	Highest Single Measurement	Minimum	Lowest Monthly % of Samples Meeting Limit	MCL	Turbidity Limits	Possible Source			
2024	Turbidity	NTU	0.08	0.04	100	0.3	0.3	Soil runoff			
Lead and Cooper *7											

Year	Substance	Units	Level	Sites AL	MCL	90 th Percentile	Violation	Possible Source
2024	Texas Copper	ppm	0.0026	0	1.0	NA	Ν	Corrosion of household plumbing systems, corrosion of natural deposits, leaching from wood preservatives

Coliform Bacteria *8

Yes	r Total Bacteriological Samples Collected	Maximum Contaminan t Level Goal	Total Coliform	Highest No. of Positive	Fecal Coliform or E.coli Maximum Contaminant Level	No. of positive E.coli or Fecal Coliform Samples	Violation	Possible Source
202	4 240	0	0	0	*8	0	Ν	Naturally present in the environment

Notes: *1 Nitrate Advisory - Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask advice from your health care provider. *2 EPA considers 50 pCi/L to be the level of concern for bet a particles. *3 Systems must complete and submit disinfection type, minimum, maximum, and average level. *4 All sample results have been used for calculating the Highest Level Detected. *5 Total Organic Carbon (TOC) no health effects. The disinfectant can combine with TOC to form disinfection byproducts. Disinfection is necessary to ensure that water does not have unacceptable levels of pathogens. Byproducts of disinfection include Trihalomethanes (THMs) and haloacetic acids (HAA) which are reported elsewhere in this report. Removal ratio is the percent of TOC removed by the treatment process divided by the percent of TOC required by TCEQ to be removed. *6 Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a media for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea, and associated headaches. *7 Definitions: Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high especially for pregnant wonten and young clinateria. Lead in drinking water is primaterials and components associated with service lines and none primining. This water supply is responsible to providing ingin quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (800) 426-4791 or at <u>http://www.epa.gov/safewater/lead</u>. *8 Coliform Bacteria, Fecal Coliform or E.coli maximum containment level (MCL); A routine sample and a repeat sample are total coliform positive and one is also fecal coliform or E.coli positive. A violation occurs if both a routine sample and a repeat sample are total coliform positive. A violation occurs if fecal coliform or E.coli are ever positive.

Unregulated and Secondary Drinking Water Standards Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted. Any unregulated contaminants detected are reported in the following table. For additional information and data visit ring-rule, or call the Safe Drinking Water Hotline at (800) 426-4791. https://www.epa.go

Year	Substance	Units	Average	Minimum	Maximum	MCL	MCLG	Possible Source
2024	Chloroform	ppb	17.24	10.9	24.70	Not Regulated	Not Regulated	
2024	Bromoform	ppb	1.03	0	1.54	100.00	100.00	
2024	Bromodichloromethane	ppb	15.88	13.60	18.40	Not Regulated	Not Regulated	1
2024	Dibromochloromethane	ppb	8.33	7.32	9.51	Not Regulated	Not Regulated	By-product of drinking water disinfection. Not
2024	Dibromoacetic Acid	ppb	3.49	1.70	8.10	Not Regulated	Not Regulated	regulated individually, included in Total Trihalomethanes
2024	Bromochloroacetic Acid	ppb	6.79	5.10	9.80	Not Regulated	Not Regulated	
2024	Trichloroacetic Acid	ppb	4.89	2.50	7.30	Not Regulated	Not Regulated	
2024	Monochloroacetic Acid	ppb	2.09	1.10	3.80	Not Regulated	Not Regulated	
2024	Manganese	ppm	0.0015	0.0015	0.0015	0.05	NA	Abundant naturally occurring element
2024	Aluminum	ppm	0.022	0.022	0.022	0.050 - 0.200	0.050	Abundant naturally occurring element
2024	Nickel	ppm	0.001	0.001	0.001	0.1000	Not Regulated	Corrosion of household plumbing systems; erosion of natural deposits
2024	Calcium	ppm	42.6	42.6	42.6	NA	NA	Abundant naturally occurring element
2024	Conductivity@25 C UMHOS/CM	UMHO /CM	357.000	357.000	357.000	NA	Not Regulated	Conductivity of water is its ability to conduct electric current. Salts or other chemicals that dissolve break down into positive and negative ions
2024	Chloride	ppm	24.3	24.3	24.3	250.0	Not Regulated	Chlorides may get into surface water from several sources including: rocks containing chlorides, agricultural run-off, wastewater from industries, oil well wastes, and effluent wastewater from wastewater treatment plants
2024	Hardness as CACO3	ppm	116	116	116	NA	NA	Naturally occurring calcium and magnesium
2024	рН	pН	7.91	7.77	8.06	6.50-8.50	6.50-8.50	Measure of corrosiveness of water
2024	Sodium	ppm	20.6	20.6	20.6	NA	NA	Erosion of natural deposits, by-product of oil field activity
2024	Magnesium	ppm	2.29	2.29	2.29	NA	NA	Abundant naturally occurring element
2024	Potassium	ppm	6.54	6.54	6.54	Not Regulated	Not Regulated	Abundant naturally occurring element
2024	Sulfate	ppm	27.00	27.00	27.00	250.0	250.0	Naturally occurring; common industrial by-product; by-product of oil field activity
2024	Total Alkalinity as CaCO3	ppm	101	101	101	NA	NA	Naturally occurring soluble mineral salts
2024	Total Dissolved Solids	ppm	193	193	193	500	500	Total dissolved mineral constituents in water

UCMR5 reporting and the inclusion of the statement. For Rice Water Supply, the following UCMR5 results for 2024 are required:

PFBA	0.0058	2/26/2024	CITY CORSICANA CONNECTION
PFBA	0.008	2/26/2024	CITY OF ENNIS CONNECTION
PFBS	0.0050	2/26/2024	CITY OF ENNIS CONNECTION
PFHxA	0.0055	2/26/2024	CITY OF ENNIS CONNECTION
PFPeA	0.0072	2/26/2024	CITY OF ENNIS CONNECTION
PFBA	0.0052	5/15/2024	CITY CORSICANA CONNECTION

For future reference, here are our instructions on accessing UCMR5 data via the EPA:

The EPA has these results in the UCMR5 Data Finder: <u>Fifth Unregulated Contaminant</u> <u>Monitoring Rule Data Finder | US EPA</u>.

The Rice Water Supply has developed an inventory of both city-owned and customerowned service lines. This inventory serves as a crucial foundation for water systems to address a significant source of lead in drinking water. To access the inventory, please visit/contact the office at (903) 326-5551 ask for San J. Paz.